Atomistic Simulation of Tensile Deformation Behavior of ∑5 Tilt Grain Boundaries in Copper Bicrystal

نویسندگان

  • Liang Zhang
  • Cheng Lu
  • Kiet Tieu
چکیده

Experiments on polycrystalline metallic samples have indicated that Grain boundary (GB) structure can affect many material properties related to fracture and plasticity. In this study, atomistic simulations are employed to investigate the structures and mechanical behavior of both symmetric and asymmetric ∑5[0 0 1] tilt GBs of copper bicrystal. First, the equilibrium GB structures are generated by molecular statics simulation at 0K. The results show that the ∑5 asymmetric GBs with different inclination angles (φ) are composed of only two structural units corresponding to the two ∑5 symmetric GBs. Molecular dynamics simulations are then conducted to investigate the mechanical response and the underlying deformation mechanisms of bicrystal models with different ∑5 GBs under tension. Tensile deformation is applied under both 'free' and 'constrained' boundary conditions. Simulation results revealed different mechanical properties of the symmetric and asymmetric GBs and indicated that stress state can play an important role in the deformation mechanisms of nanocrystalline materials.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calibration of nanocrystal grain boundary model based on polycrystal plasticity using molecular dynamics simulations

Decohesion parameters are computed for the tilt grain boundaries through molecular simulations and the parameters are employed in a elastoplastic deformation model of a face centered cubic (FCC) nanocrystal. The calibrated continuum grain boundary model accounts for reversible elastic and irreversible inelastic separation sliding deformations. The intragranular plasticity was modeled using a ra...

متن کامل

Effect of stress state on deformation and fracture of nanocrystalline copper: molecular dynamics simulation

Deformation in a microcomponent is often constrained by surrounding joined material making the component under mixed loading and multiple stress states. In this study, molecular dynamics (MD) simulation are conducted to probe the effect of stress states on the deformation and fracture of nanocrystalline Cu. Tensile strain is applied on a Cu single crystal, bicrystal and polycrystal respectively...

متن کامل

Atomistic Simulations of Stress Concentration and Dislocation Nucleation at Grain Boundaries

Dislocation channeling observed in irradiated metals has been thought to be one of the key stress factors in irradiation assisted stress corrosion cracking since it is an evidence to suggest that the slip deformation is localized and that the strong misfit are generated at grain boundaries. In the present study, the stress concentration and defect nucleation of polycrystalline copper thin film ...

متن کامل

Flow Behavior of SP-700 Titanium Alloy During Hot Tensile Deformation in α+β and β Phase Regions

In this paper, in order to study the flow behavior and elongation of as-cast ingots of SP-700 titanium alloy, hot tensile test was done in α/β dual phase and β single phase regions using strain rate of 0.1 s-1. Results showed that the hot tensile behavior of SP-700 in the α/β dual phase region (700-900 ºC) was different from the β single phase one (950-1100 ºC) due to the nature of alpha and be...

متن کامل

RELATIONSHIP BETWEEN MISORIENTATION AND BISMUTH INDUCED EMBRITTLEMENT OF [OOl] TILT BOUNDARY IN COPPER BICRYSTAL

The grain boundary embrittlement (GBE) of metal copper caused by bismuth segregation has been extensively studied both experimentally and theoretically(l-10). By using the orientation-controlled bicrystals, the strong dependence of Bi segregation and GBE upon grain boundary(GB) structures has been revealed (3-7). A systematic study of the dependence of the GBE upon the GB structures, for [ 1 lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014